# **SERIE D'EXERCICES**

# LES TABLEAUX (NIVEAU 2 MOYEN)

**NB**: proposer une implémentation en python des exercices proposés

### Exercice 1:

Ecrire un algorithme qui remplit un tableau T par n **lettres** (2<n≤20). Ensuite affiche, **sans redondance**, les éléments de ce tableau T.

### Exercice 2:

Ecrire un algorithme qui réalise les tâches suivantes :

- Remplir un tableau LET de 35 cases par des lettres majuscules au hasard.
- Compter la **fréquence d'apparition** (le nombre d'occurrence) de chaque lettre majuscule dans le tableau LET et ranger les résultats statistiques dans un tableau FE.

### Exercice 3:

Soit T un tableau contenant N entiers ( $10 \le N \le 50$ ). On se propose d'écrire un algorithme qui permet d'**inverser** les éléments de T (permuter T[1] et T[n], puis T[2] et T[n-1],...).

# **Exercice 4:**

Soit T un tableau contenant N entiers ( $10 \le N \le 50$ ). On propose d'écrire un algorithme qui permet de **regrouper** les éléments pairs au début et les éléments impairs à la fin de T, sans modifier l'ordre de saisie des valeurs paires et impaires.

### Exercice 5:

On se propose d'écrire un algorithme qui permet de saisir un entier n>1 et pair. Ensuite remplir un tableau T par n entiers égaux deux par deux, puis de le transformer en un **tableau symétrique**.

Exemple: pour n = 10

| I | ETAT INITIAL |   |    |   |    |    |   |    |   |   |  |  |  |  |
|---|--------------|---|----|---|----|----|---|----|---|---|--|--|--|--|
|   | 4            | 4 | 0  | 0 | -5 | -5 | 8 | 8  | 3 | 3 |  |  |  |  |
|   | ETAT FINAL   |   |    |   |    |    |   |    |   |   |  |  |  |  |
|   | 4            | 0 | -5 | 8 | 3  | 3  | 8 | -5 | 0 | 4 |  |  |  |  |

# Exercice 6:

Soit le tableau T suivant :

| ٠. |    |   | - |   | _  |   |   |   |   |   |
|----|----|---|---|---|----|---|---|---|---|---|
|    | 10 | 7 | 9 | 7 | 10 | 6 | 7 | 4 | 8 | 8 |

Pour chaque élément de T on ne garde que sa première occurrence et on remplace les autres par 0. On regroupe les éléments restant au début du tableau T.

| 10 | 7 | 9 | 0 | 0 | 6 | 0 | 4 | 8 | 0 |
|----|---|---|---|---|---|---|---|---|---|
|    |   |   |   |   |   |   |   |   |   |

Ecrire un algorithme qui réalise le traitement ci-dessus pour un tableau T de n ( $2 \le n \le 20$ ) entiers positifs non nuls.

# Exercice 7:

Ecrire un algorithme qui permet de remplir un tableau T par les résultats de 20 lancements d'un dé. Le programme doit remplir par la suite un **tableau fréquence** F par le nombre de fois que chaque face est obtenue.

## Exercice 8:

Ecrire un algorithme qui calcule le schtroumpf des deux tableaux. Pour calculer le schtroumpf, il faut multiplier chaque élément du tableau 1 par chaque élément du tableau 2, et additionner le tout. Par exemple si l'on a :

Tableau 1:2 5 8 4

Tableau 2:6 7

Le Schtroumpf sera : 6\*2 + 6\*5 + 6\*8 + 6\*4 + 7\*2 + 7\*5 + 7\*8 + 7\*4 = 247

#### Exercice 8:

Ecrire un algorithme permettant à l'utilisateur de saisir les notes d'une classe. Le programme, une fois la saisie terminée, renvoie le nombre de notes supérieures à la moyenne de la classe.

# **Exercice 9:**

Ecrire l'algorithme effectuant le décalage des éléments d'un tableau. (Décalage à gauche)

- Tableau initial 5|6|7|10|8|9|13
- Tableau modifié 6|7|10|8|9|13|5

# Exercice 10:

Soit T un tableau rangé dans l'ordre croissant. Ecrire un algorithme qui insère un élément donné X dans le tableau T en respectant l'ordre croissant.

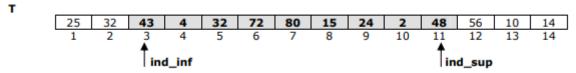
#### Exercice 11:

Soit T un tableau de N éléments (2<N<200) de type caractère. On désire écrire un algorithme permettant de vérifier l'existence dans le tableau T d'un certain nombre de mots saisis dans un tableau Tm de P éléments (2<P<20).

Exemple:

Tm BAC Canne Sujet

T LBSujetaBACanned


#### NB:

- 1. Les caractères de la chaîne recherchée doivent être adjacents dans le tableau T et non dispersés.
- 2. on remarque que les mots BAC, Canne et Sujet figurent dans le tableau T.

### Exercice 12:

Ecrire un algorithme qui permet de déterminer et d'afficher tous les diviseurs suivis de tous les multiples d'un entier p donné, dans une partie d'un tableau T de n entiers donnés. Cette partie est délimitée par deux indices ind\_inf et ind\_sup.

Avec  $(0 < ind_inf < ind_sup \le n \le 15)$ 



Pour n = 14, p = 8, ind\_inf = 3 et ind\_sup = 11, le programme affichera : Les diviseurs de 8 sont : 4 2 Les multiples de 8 sont : 32 72 80 24 48

# Exercice 13:

Ecrire un algorithme qui permet de lire un code d'ADN sous forme d'un tableau D de n caractères ( $5 \le n \le 30$ ). Puis déterminer et afficher le code d'ARN (sous forme d'un tableau R) correspondant. Sachant que le code d'ADN utilise les lettres A, T, C et G et le code ARN correspondant est obtenu par correspondance de base :

### Exercice 14:

Soit T un tableau de N chaînes de caractères non vides et dont la taille maximale est 5 caractères. On se propose d'écrire un algorithme permettant de réaliser le traitement suivant :

- 1. remplir le tableau T par N chaînes (2<=N<=30),
- 2. éliminer de chaque élément du tableau tous les caractères non alphabétiques,
- 3. convertir toutes les chaines non vides obtenues en majuscule,
- 4. afficher toutes les chaines non vides palindromes

N.B: une chaîne est dite palindrome si elle se lit de la même façon de gauche à droite et de droite à gauche. Exemples : AllA, RADAR, AA, Z Exemple :

Si N=5 et les éléments de T sont :

| T=       | A54a      | 15aZ     | Ra8d9ar   | 2009      | h?       |              |
|----------|-----------|----------|-----------|-----------|----------|--------------|
| ✓ Le tal | bleau apr | ès l'éta | pe 2 cont | tiendra l | es chaîn | es suivantes |
| T=       | Aa        | aZ       | Radar     |           | h        |              |
| ✓ Le tal | leau apr  | ès l'éta | pe 3 cont | tiendra l | es chaîn | es suivantes |
| T=       | AA        | AZ       | RADAR     |           | Н        |              |
|          |           |          | 44 545    |           |          |              |

☑ Le programme affichera : AA RADAR H

# Exercice 15:

Ecrire un algorithme qui permet de remplir un tableau T par N entiers (n dans 5..10) sans doublons (l'élément doit exister une seul fois dans le tableau) puis insérer un élément donné X (sachant que x n'existe pas dans le tableau) dans une position donnée ix. Enfin afficher Le tableau

#### Exemple:

Pour n = 7, soit T:

| • | 1 out 11 = 7, 3 oit 1 : |    |   |    |    |    |    |  |  |  |  |
|---|-------------------------|----|---|----|----|----|----|--|--|--|--|
|   | 1                       | 55 | 7 | 99 | 22 | 33 | 54 |  |  |  |  |

Si x=10 et ix=5 alors le tableau devient :

| SIX 10 CC IX S GIOLS IC CODICOG GEVICITE I |   |    |   |    |    |    |    |    |  |  |  |
|--------------------------------------------|---|----|---|----|----|----|----|----|--|--|--|
|                                            | 1 | 55 | 7 | 99 | 10 | 22 | 33 | 54 |  |  |  |